Machine Learning for Product Managers

by Neal Lathia

It’s now becoming common for me to hear that product owners/managers, technical managers and designers are turning to popular online courses to learn about machine learning (ML). I always encourage it — in fact, I did one of those courses myself (and blogged about it). However, it’s not always clear how much benefit someone whose goal is to design, support, manage, or plan for products that use machine learning will get from doing an online course in ML. These courses throw you into the deep end, asking you to start programming classifiers, when many non-technical team mates are only looking for sufficient knowledge to be able to work in teams that are creating an ML-driven product. It’s a bit like wanting to drive a car, and ‘therefore’ signing up to a course on combustion engines — probably a little bit too detailed for practical day-to-day driving!

I therefore recently ran a session at Skyscanner that aimed to cover machine learning from a non-technical, product-centric perspective. We first covered definitions, and then moved on to a number of key issues that are important to keep in mind to create successful products that go beyond ‘just’ the ML. This post is a summary of that session.

Part 1: Machine learning, without the math

We began by addressing the burning question on everybody’s mind: what is machine learning? I quoted the first sentence of this paper by Pedro Domingos:

Machine learning systems automatically learn programs from data.

That’s basically it. Machine learning is a way of creating a program that does something, without you having to figure out exactly how to do it. Compare that to the usual way we create programs, where we need to be able to code every step (if this happens, then do that, and then do that). In practice, the way this happens is that you give an ML algorithm a data set with examples, and the algorithm’s job is to learn from the examples. Forget the math that is happening under the hood: it is enough to know that, at the heart of every ML algorithm, is the concept of error — ML algorithms are all trying to minimize how many mistakes they make.

There are many families of ML algorithms; the most common two are known as supervised and unsupervised learningHow can you recognize them in products? Let’s dive into some examples.

Unsupervised learning is about identifying patterns

The examples that are usually fed into unsupervised ML algorithms are characterized by the fact that there is no deterministic ‘correct’ answer that the algorithm needs to learn to predict. Products that use unsupervised learning are typically surfacing patterns in user data.

Read More

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.